WORK SHEET

- 1. A 60 W light bulb has a current of 0.5 A flowing through it. Calculate (i) the number of electrons passing through a cross-section of the filament (ii) the number of electrons that pass the cross-section in one hour.
- 2. Body *A* has a positive charge of 0.6 μ C and body *B* has a charge of 0.3 μ C (negativee). If 87×10^{15} electrons are transferred from *A* to *B*, what are the charges in coulombs on *A* and on *B* after the transfer?
- 3. Three equal resistors are connected as shown in Fig 1 below. Find the equivalent resistance between points A and B.

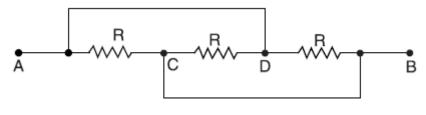


Fig.1

4. Find the current supplied by the d.c. source in the circuit shown in Figure 2 below

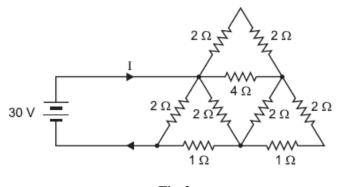


Fig.2

5. By using KCL and KVL, Determine the current in 4 ohms resistance of the circuit shown in Figure 3 below

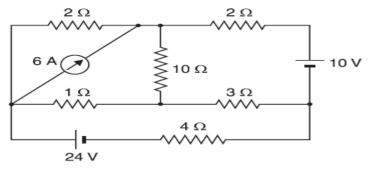


Fig.3

6. Use nodal analysis to find V_0 in the circuit in fig.4

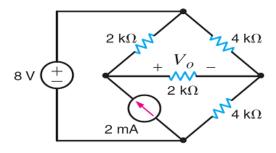


Fig.4

7. Find V_x using super position in fig. 5

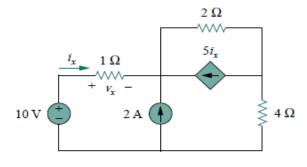


Fig.5

8. By using voltage divider rule, calculate the voltages v_x and v_y in the circuit shown in Figure 6 below.,

Fig.6

9. For the circuit in fig 7 obtain the Thevenin equivalent as seen from terminals:

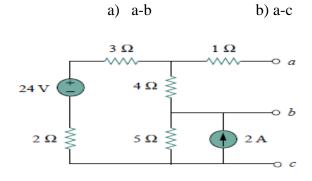


Fig.7

10. Obtain Norton equivalent at terminal a-b of the circuit in fig 8.

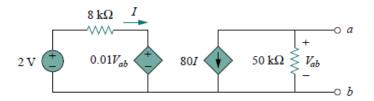


Fig. 8

11. Refer to fig 9. for what value of R is the power dissipated in R maximum? calculate the power

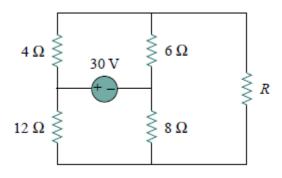


Fig.9